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Abstract

Conductive heat transport across an isothermal three-dimensional irregular surface into a semi-in®nite conductive

medium and heat transport across the interface between two semi-in®nite conductive media are considered by as-

ymptotic and numerical methods. The temperature pro®le far from the surface or interface varies in a linear manner

with respect to distance normal to the mean position of the surface or interface, and is displaced by a constant with

respect to the linear pro®le corresponding to the ¯at geometry. The displacement constant amounts to a macroscopic

temperature drop or discontinuity that depends on the geometry of the irregularities and on the media conductivities.

An asymptotic expansion for the jump is derived by the method of domain perturbation for small-amplitude, doubly-

periodic corrugations, and an integral formulation is developed for ®nite-amplitude corrugations. Numerical results

based on the boundary element method for three-dimensional wavy corrugations with square or hexagonal pattern

show that the asymptotic results are accurate when the ratio of the vertical span to the wavelength of the corrugations is

less than roughly 0.5. Illustrations of the ¯ux distribution over the corrugated surfaces show explicitly a considerable

enhancement or reduction at the crests or troughs, even for moderate-amplitude irregularities. Ó 2001 Elsevier Science

Ltd. All rights reserved.

1. Introduction

Consider conductive heat transport from a ¯at sur-

face located at z � 0 over which the temperature is held

at the constant value T0, subject to a ®xed rate of

transport into the overlying semi-in®nite medium. El-

ementary analysis shows that the temperature pro®le is

given by T � T0 � cz, where the slope c � ÿq=j is the

ratio of the ¯ux q to the medium conductivity j, e.g., [1].

If the surface is not perfectly ¯at, a non-linear tem-

perature ®eld is established near the surface, and the

temperature pro®le far from the surface is modi®ed to

obtain the shifted linear form

T1 � T0 � c�cD � z�: �1�

The pro®le displacement constant cD, with units of

length, depends on the de®nition of the origin and, more

important, on the surface geometry. The evaluation of

cD as a function of the geometry and amplitude of ir-

regularities is necessary for deriving e�ective boundary

conditions to be applied at the nominal position of the

planar surface hosting the irregularities.

The problem of transport across an uneven surface

described in the preceding paragraph is relevant to a

variety of engineering applications involving heat

transfer across rough and irregular boundaries, such as

the surface of a circuit board in microelectronics. Con-

sider, for example, heat transport from an irregular

surface toward a planar surface placed at a distance d

above the irregular surface, where the temperature over

the planar surface is held constant at the value T1. If d is

su�ciently larger than the amplitude of the corruga-

tions, the heat ¯ux across the planar surface is given by

q � ÿj
T1 ÿ T0 ÿ ccD

d
: �2�
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Substituting c � ÿq=j and rearranging, we ®nd

q � ÿ j
1� cD=d

T1 ÿ T0

d
: �3�

Anticipating that cD will be negative, we recognize

the factor 1=�1� cD=d� as the enhancement in the ¯ux

due to surface roughness. This example illustrates that

the determination of cD is necessary for evaluating the

rate of transport as a function of the surface geometry.

Consider next conductive heat transport across the

interface between two media. If the interface is ¯at, lo-

cated at z � 0, then the temperature pro®le is given by

T1 � T0 � cz on one side, and by T2 � T0 � kcz on the

other side, where T0 is the uniform temperature of the

interface, c � ÿq=j1 is the slope of the temperature

pro®le in the upper medium, q is the uniform ¯ux, and k

is the ratio of the conductivities of the two media, de-

®ned as k � j1=j2. These linear distributions satisfy the

usual requirement of continuity of temperature and ¯ux

across the interface. If, however, the interface is not ¯at,

the temperature distribution far from the interface is

modi®ed to become

T11 � T0 � c�z� cD�; T12 � T0 � kc�zÿ cD�; �4�
where cD is a displacement constant dependent on the

interface geometry and ratio of conductivities k. In

particular, when k � 1, cD vanishes, and as k tends to

in®nity, cD tends to the displacement constant discussed

previously for transport across an irregular surface held

at a constant temperature. The macroscopic disconti-

nuity in the temperature across the interface is given by

DT � T11 �z � 0� ÿ T12 �z � 0� � ccD�1� k�: �5�

Nomenclature

a1, a2 base vectors describing a doubly-periodic

interface

a1x; a1y components of a1

a2x; a2y components of a2

A area of a unit cell

Am;n coe�cients of the Fourier expansion of

the temperature ®eld

AD disturbance vector potential

cD displacement constant

ĉD dimensionless displacement constant

d distance between the upper and lower

plates

D one period of the doubly-periodic interface

edt exponentially decaying terms

ez unit vector in the z-direction

G3D±2P Green's function of Laplace's equation

H function describing the position of the

interface

hc surface contact conductance

I imaginary unit

K�m; n� eigenvalues of the Laplacian operator in

oblique coordinates

k1, k2 reciprocal wave vectors

k1x; k1y components of k1

k2x; k2y components of k2

L length scale of corrugations

n unit vector normal to the interface

q0; q heat ¯ux

Rc surface contact resistance

T temperature

T1 temperature at the far-®eld

T0 temperature of the interface

T D disturbance component of the

temperature ®eld

T i ith order expansion of the temperature

®eld

W function describing the location of the

interface with respect to the base vectors
~W normalized function describing the

position of the interface

x; y coordinates in the plane of the interface

x1; y1 non-orthogonal coordinates

x position vector

x0 position vector

x0 position vector

z coordinate normal to the plane of the

interface

Greek symbols

am;n Fourier components of the interface

c ratio of the ¯ux to the medium

conductivity

DT macroscopic temperature jumpcDT dimensionless temperature jump

DTc temperature rise in the contact zone

� dimensionless small parameter

f strength of vortex sheet

j medium conductivity

k ratio of conductivities

/ density of the double-layer potential

Subscripts

1 upper medium

2 lower medium

n;m the �n;m�th coe�cient of the Fourier

expansion

Superscripts

0, 1, 2 order of the perturbation expansion

3D±2P three-dimensional and doubly-periodic

1 indicates the far-®eld condition

1790 M.M. Fyrillas, C. Pozrikidis / International Journal of Heat and Mass Transfer 44 (2001) 1789±1801



The evaluation of cD as a function of k and of the

interface geometry is necessary for establishing macro-

scopic boundary conditions for the jump in the tem-

perature across an irregular interface. Conservation of

energy requires that the macroscopic ¯ux is continuous

across the nominally ¯at interface.

Our main goal in this paper is to evaluate the constant

cD for the two problems described, for non-planar sur-

faces with doubly-periodic three-dimensional corruga-

tions. First, we carry out a perturbation expansion for

small-amplitude corrugations with sinusoidal shapes.

Second, we develop an integral formulation for corru-

gations with arbitrary amplitude, and present numerical

results obtained using a boundary element method. In

the integral formulation, the temperature ®eld is ex-

pressed in terms of a doubly-periodic array of point-

source dipoles, and the wall ¯ux is computed from a

complementary single-layer representation. An im-

portant aspect of the integral formulation is the use of the

doubly-periodic Green's function of Laplace's equation

in three dimensions, which is computed in an expedited

fashion in terms of Ewald sums. The results illustrate the

distribution of the ¯ux over the surfaces and demonstrate

explicitly the enhancement or reduction in the ¯ux at the

crests and troughs of the periodic waves.

The problem of transport across irregular surfaces

and interfaces separating two conforming media con-

sidered in this paper is related to the much-studied

problem of transport across two solid bodies in imper-

fect contact, where heat ¯ows from one body to the

other, as reviewed most recently by Lambert and

Fletcher [2], and discussed in the recent papers by Tio

and Toh [3] and Das and Sadhal [4]. Two bodies in

contact actually touch only at discrete spots or crests

whose surface area depends on the elastic and plastic

properties of the materials, as well as on the force by

which the bodies are pressed together. The total contact

area across which transport occurs is only a fraction of

the macroscopically measured nominal surface area of

the interface. Because of the reduction in transport area

due to imperfect contact, a rise in temperature

DTc � T11 �z � 0� ÿ T12 �z � 0� is established across the

contact zone to accommodate the speci®ed macroscopic

¯ux q, where the subscript c denotes the contact zone. In

the case of perfect contact on a planar surface, DTc � 0; in

the diametrically opposite limit of vanishing contact area

due to geometrical exclusion or mismatch, DTc is in®nite.

In engineering applications, the temperature rise in the

contact zone is quanti®ed in terms of the surface contact

conductance hc � ÿq=DTc or its inverse contact resistance

Rc � 1=hc. A temperature pro®le displacement constant

cD may be de®ned by setting q � ÿj1DTc=�cD�1� k�� and

solving for cD to obtain cD � ÿj1DTc=�q�1� k��, where k
is the ratio of the media conductivities.

In the case of imperfect conduct, the temperature rise

DTc and associated displacement length cD is positive

due to a de®ciency in the actual transport area, as

studied by previous authors. In contrast, in the case of

perfect conduct across an irregular interface, the tem-

perature drop DTc is negative due to the enhancement in

the actual transport area. Imperfect conduct occurs on a

microscopic scale due to the natural roughness of sur-

faces possibly resembling fractals, as discussed by Ma-

jumdar and Tien [5] and Brady and Pozrikidis [6].

Perfect conduct considered in this paper occurs on a

microscopic scale when one of the media is a gas or a

liquid ®lling the entire space of the irregularities, and on

a large scale when two media are fabricated to be con-

forming. Thus, the problems of contact conductance

and transport across conforming non-planar interfaces

are complementary from both a geometrical and physi-

cal viewpoint.

Transport across a planar surface or interface with

distributed irregularities may be regarded as a local

model of transport across a generally curved three-di-

mensional surface or interface with irregularities whose

size is smaller than the local radius of curvature. The

e�ective boundary conditions involve a modi®ed

macroscopic wall temperature or discontinuity across an

interface that is determined by the local ¯ux and wall

roughness; the curvature of the surface or interface may

be neglected at this level of approximation. This gener-

alization will be implicit in the following discussion.

2. Problem statement

We consider steady heat conduction through a semi-

in®nite, homogeneous, and isotropic medium bounded

by a doubly-periodic surface, as depicted in Fig. 1(a).

The geometry of the surface is described by the two base

vectors a1 and a2 lying in the xy plane, such that if the

surface is described by the equation z � H�x0�, where

x0 � �x; y�, then

H�x� na1 � ma2� � H�x0�; �6�
where n and m are two integers. To satisfy this period-

icity condition, we introduce the reciprocal wave num-

ber vectors

k1 � 2p
A

a2 � ez; k2 � 2p
A

ez � a1; �7�

where A � ja1 � a2j is the area of the unit cell in the xy

plane and ez is the unit vector along the z-axis, and ex-

press the function H�x0� in the form

H�x0� � W �x0 � k1; x
0 � k2�; �8�

where W is a periodic function with period equal to

unity with respect to either one of its two scalar argu-

ments. Without loss of generality, we assume that the

average value of W over the xy plane is equal to zero.
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Steady-state conduction in a homogeneous and iso-

tropic three-dimensional medium is governed by La-

place's equation

r2T � o2T
ox2
� o2T

oy2
� o2T

oz2
� 0; �9�

supplemented with suitable boundary and far-®eld

conditions, e.g., [1]. In this work, we address two dif-

ferent problems distinguished by the choice of boundary

conditions.

In the ®rst problem, we consider heat transfer across

a periodic surface over which the temperature is held

constant at the value T0. Requiring the Dirichlet

boundary condition over the surface, and a uniform rate

of transport far from the surface, we obtain the

boundary and far-®eld conditions

T z
ÿ � H�x0�� � T0; j

oT
oz
�z!1� � ÿq0; �10�

where j is the medium conductivity. The problem is

reduced to solving Laplace's equation (9) subject to

conditions (10).

In the second problem, we consider heat transport

across a doubly-periodic surface separating two gener-

ally di�erent conductive media. Requiring continuity of

temperature and ¯ux across the interface, we obtain

T1 � T2; j1n � rT1 � j2n � rT2; �11�
at z � H�x0�, where the indices 1 or 2 denote medium 1

or 2, respectively, with medium 1 occupying the semi-

in®nite space above the interface, and the unit vector n is

normal to the interface. Far from the interface, we

specify a constant rate of transport

j1

oT1

oz
�z!1� � j2

oT2

oz
�z! ÿ1� � ÿq0: �12�

The problem is reduced to solving Laplace's equation

(9) subject to the far-®eld condition (12) and the inter-

facial conditions (11).

3. Small-amplitude corrugations

For small-amplitude corrugations, an approximate

solution to the two problems stated in Section 2 may be

found using the method of domain perturbation

(Holmes [7]). The idea is to solve Laplace's equation

subject to approximate boundary conditions on a ¯at

surface derived by expanding the exact boundary con-

ditions on the corrugated surface in a Taylor series

about the planar con®guration.

3.1. First problem

First, we consider transport in a semi-in®nite do-

main. Assuming that the amplitude of the corrugations

is small, we write

x0 � k1 � k1xx� k1yy � 2px1;

x0 � k2 � k2xx� k2yy � 2py1

�13�

and express the function H, de®ned before in Eq. (6), in

the form

H�x0� � W � � eW �2px1; 2px2�; �14�
where � is a small dimensionless number, and the am-

plitude of eW is of order unity; the periodic function W

Fig. 1. (a) The geometry of a doubly-periodic surface is determined by the two base vectors a1 and a2. When the angle between the two

vectors is equal to p=3, we obtain a hexagonal lattice, as shown in (b) corresponding to a1 � �L; 0� and a2 � �0:5L;
���
3
p

L=2�, where L is

the lattice side.
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was de®ned in Eq. (8). In terms of the non-orthogonal

coordinates x1 and y1, Laplace's equation (9) takes the

form

�k2
1x � k2

1y�
o2T
ox2

1

� �k2
2x � k2

2y�
o2T
oy2

1

� 2�k1xk2x � k1yk2y� o2T
ox1oy1

� 4p2 o2T
oz2
� 0: �15�

Next, we expand T in an asymptotic series in �,

T � T 0 � �T 1 � �2T 2 � O��3� �16�
and the boundary condition expressed by the ®rst of

(10), in a Taylor series about z � 0, to obtain

T �z � 0� � � eW �2px1; 2py1� oT
oz
�z � 0�

� �
2

2
eW 2�2px1; 2py1� o

2T
oz2
�z � 0� � O��3� � 0: �17�

Substituting expansion (16) into Eqs. (15) and (17),

and setting the sum of coe�cients of like powers of �
equal to zero, we derive a series of problems.

To zeroth-order, we obtain the ¯at-surface solution

T 0 � T0 � cz, where c � ÿq0=j. To ®rst order, T 1 satis-

®es Eq. (15) subject to the boundary and far-®eld con-

ditions

T 1�z � 0� � ÿ eW oT 0

oz
�z � 0� � ÿ eW c;

oT 1

oz
�z!1� � 0: �18�

To solve this problem, we expand the function eW in a

doubly-periodic Fourier series as

eW �X
m;n

am;n exp 2pI�mx1� � ny1��; �19�

where am;n are the coe�cients of the (m; n) complex±ex-

ponential Fourier series, and I is the imaginary unit. To

ensure that the mean position of the irregularities is

equal to zero, we require a0;0 � 0. A similar expansion

for T 1 yields

T 1 �
X
m;n

A1
m;n exp � ÿ K�m; n�z� exp 2pI�mx1� � ny1��:

�20�

Substituting expansion (20) into Eq. (15), we ®nd

K�m; n�
�

�����������������������������������������������������������������������������������������������������
�k2

1x � k2
1y�m2 � �k2

2x � k2
2y�n2 � 2�k1xk2x � k1yk2y�nm

q
:

�21�
Requiring the boundary condition expressed by the

®rst of Eq. (18), we obtain an expression for the Fourier

components, A1
m;n � ÿcam;n. Because K0;0 � 0, the com-

ponent A1
0;0 leads to a ®nite value of T 1 in the far ®eld

(z!1). The displacement constant cD is simply A1
0;0=c,

which, however, is equal to zero due to the stipulation

a0;0 � 0.

The second-order problem for T 2 is governed by

Laplace's equation (15) subject to the modi®ed bound-

ary and far-®eld conditions

T 2�z � 0� � ÿ eW oT 1

oz
�z � 0� ÿ

eW 2

2

o2T 0

oz2
�z � 0�

� ÿ eW X
m;n

am;ncK�m; n� exp 2pI�mx1� � ny1��;

oT 2

oz
�z!1� � 0: �22�

We note that the right-hand side of the ®rst of Eq.

(22) is the product of periodic functions, and this allows

us to expand T 2 in a series similar to that for T 1, as

shown in Eq. (20).

An explicit expression for T 2 is not necessary for

calculating the displacement constant; as in the ®rst-

order problem, this is equal to A2
0;0=c. The analysis shows

that A2
0;0 is simply equal to the areal average of the

boundary condition over the xy-plane,

A2
0;0 �

Z 1

0

Z 1

0

T 2�z � 0�dx1 dx2 � ÿc
X
m;n

K�m; n�jam;nj2:

�23�
Expressing the function eW in Fourier sine and cosine

components with respect to x and y with coe�cients

bm;n, we ®nd

cD�
A2

0;0

c

�ÿ�
2

2

����������������
k2

1x�k2
1y

q X
m

mb2
m;0

 
�

����������������
k2

2x�k2
2y

q X
n

nb2
0;n�

1

2

X
m;n 6�0

K�m;n�b2
m;n

!
:

�24�
Using (7), we ®nd that in terms of the components of

the base vectors a1 � �a1x; a1y� and a2 � �a2x; a2y�, the

wavenumbers are given by

k1x � 2pa2y

A
; k1y � ÿ 2pa2x

A
; k2x � 2pa1y

A
;

k2y � ÿ 2pa1x

A
;

�25�

where A � ja1xa2y ÿ a1ya2xj is the area of the unit cell in

the xy plane. Expressions (25) allow us to evaluate the

right-hand side of (24). For a rectangular lattice with

base vectors along the x and y axes, a1y � 0, a2x � 0, we

obtain k2x � 0 and k1y � 0. For a hexagonal lattice with

base vectors a1x � L, a1y � 0, a2x � 0:5L, a2y �
���
3
p

L=2,

where L is a constant length, we obtain k1x � 2=�pL�,
k1y � ÿ2p=� ���3p L�, k2x � 0 and k2y � 4p=� ���3p L�.

Expression (24) provides us with the ®rst term in the

expansion of cD with respect to �. In principle, it is
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possible to continue the process to compute further

terms. In practice, the complexity of the algebraic ex-

pressions requires the use of algebraic manipulation

programs which lies outside the scope of this work.

3.2. Second problem

The perturbation analysis for the second problem is

similar to that for the ®rst problem discussed in the

preceding subsection. To each order i in �, the tem-

perature ®eld in the upper or lower medium, T1 or T2,

satis®es Laplace's equation (15) subject to the following

modi®ed interface conditions applied at z � 0,

T i
1�z � 0� ÿ T i

2�z � 0� � F i�x1; y1�;

j1

oT i
1

oz
�z � 0� ÿ j2

oT i
2

oz
�z � 0� � Gi�x; y�:

�26�

The functions F i�x; y� and Gi�x; y� are obtained by

expanding the interface boundary conditions (11) about

z � 0, substituting the perturbation expansions for T1

and T2 into the resulting expressions, and setting the

coe�cient of each order in � equal to zero.

To zeroth-order, we obtain the ¯at-interface solution

T1 � cz, T2 � kcz, where k � j1=j2. To ®rst-order, we

®nd that T1 and T2 satisfy Eq. (15) subject to the inter-

face conditions

T 1
1 �z � 0� ÿ T 1

2 �z � 0� � eW oT 0
2

oz
�z � 0� ÿ eW oT 0

1

oz
�z � 0�

� c�kÿ 1� eW � c�kÿ 1�
X
m;n

am;n exp 2pI�mx1� � ny1��

k
oT 1

1

oz
�z � 0� ÿ oT 1

2

oz
�z � 0� � 0; �27�

and to the far-®eld condition

oT 1
1

oz
�z!1� � oT 1

2

oz
�z! ÿ1� � 0: �28�

As in the ®rst problem, T1 and T2 may be expanded in

doubly-periodic Fourier series in the form

T 1
1 �

X
m;n

1A1
m;n exp � ÿ K�m; n�z� exp 2pI�mx1� � ny1��;

T 1
2 �

X
m;n

2A1
m;n exp K�m; n�z� � exp 2pI�mx1� � ny1��; �29�

where 1A1
m;n and 2A1

m;n are the Fourier coe�cients, and

K�m; n� is de®ned in Eq. (21). Note that these expansions

respect the far-®eld condition (28). Requiring the inter-

face conditions (27), we obtain expressions for the

Fourier components,

1A1m; n � c
�kÿ 1�
1� k

am;n; 2A1m; n � ÿck
�kÿ 1�
1� k

am;n:

�30�

As in the ®rst problem, the displacement constants cD

for T1 and T2 are equal, respectively, to 1A1
0;0=c and

2A1
0;0=c, which vanish because a0;0 � 0.

The second-order problems for T 2
1 and T 2

2 are gov-

erned by Laplace's equation (15) subject to the modi®ed

boundary conditions

T 2
1 �z � 0� ÿ T 2

2 �z � 0� � F 2�x1; y1�;

j1

oT 2
1

oz
�z � 0� ÿ j2

oT 2
2

oz
�z � 0� � G2�x; y�

�31�

and to the far-®eld conditions

oT 1
1

oz
�z!1� � oT 1

2

oz
�z! ÿ1� � 0; �32�

where

F 2�x1; y1� � ÿ eW oT 1
1

oz
�z � 0� ÿ

eW 2

2

o2T 0
1

oz2
�z � 0�

� eW oT 1
2

oz
�z � 0� �

eW 2

2

o2T 0
2

oz2
�z � 0�

� ÿ c
�1ÿ k�2

1� k
eW X

m;n

am;nK�m; n�

� exp 2pI�mx1� � ny1��: �33�
Because we are interested only in the macroscopic

temperature jump at the nominal position of the inter-

face, we need only evaluate the di�erence

DT � 1A2
0;0 ÿ 2A2

0;0 which is equal to the areal average of

F 2�x1; y1�, given byZ 1

0

Z 1

0

F 2�x1; y1�dx1 dx2 � ÿc
�1ÿ k�2

1� k

�
X
m;n

K�m; n�jam;nj2: �34�

Expressing the function eW in Fourier sine and cosine

series with respect to x and y with coe�cients bm;n, we

®nd

DT�ÿ�2c�1ÿk�2
2�1�k�

�
����������������
k2

1x�k2
1y

q X
m

mb2
m;0

 
�

����������������
k2

2x�k2
2y

q X
n

nb2
0;n�

1

2

X
m;n 6�0

K�m;n�b2
m;n

!
;

�35�
where the wave number components kij are de®ned in

Eq. (25). The derivation of (35) completes the goal of the

perturbation expansion to second order in �.

4. Integral formulation

In Section 3, we derived asymptotic expressions for

the displacement constant cD and for the macroscopic

discontinuity across an interface, accurate to second
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order with respect to the amplitude of the corrugations.

In this section, we develop an integral formulation that

expresses the solution in terms of a distribution of point

source dipoles, and then compute numerical solutions

for arbitrary-amplitude corrugations using a boundary

element method.

4.1. First problem

In the ®rst problem, we seek a scalar function T that

satis®es Laplace's equation (9) in the upper semi-in®nite

space con®ned between positive in®nity and the doubly-

periodic surface, as illustrated in Fig. 1(a).

As z! �1, the requisite harmonic function is re-

quired to exhibit the asymptotic behavior

T ! T�1 � cz; �36�
where c is a speci®ed slope. In the ®rst step of the

mathematical formulation, T is decomposed into a far-

®eld and a disturbance component designated by the

superscript D,

T � T�1 � T D: �37�
As z tends to �1, the disturbance component T D is

required to become constant. The Dirichlet boundary

condition expressed by the ®rst of Eq. (10), requires

T D � T0 ÿ T�1 �38�
over the doubly-periodic boundary.

The disturbance component, T D, is now expressed in

terms of a double-layer harmonic potential in the form

T D�x0� �
Z

D
/�x� n�x� � rG3D±2P�x; x0�dS�x�; �39�

where D is one period of the doubly-periodic surface, the

point x0 lies in the solution domain above the doubly-

periodic surface, n�x� is the unit vector normal to D

pointing into the upper half-space, and / is the density

of the double-layer potential with units of temperature.

G3D±2P is the doubly-periodic Green's function of La-

place's equation in three dimensions discussed by

Hautman and Klein [8] and Pozrikidis [9]. As z! �1,

we obtain the asymptotic behavior

lim
z0!�1

G3D±2P�x; x0� � ÿ 1

2A
�z0 ÿ z� � edt; �40�

where A was de®ned after Eq. (25), and edt stands for

``exponentially decaying terms''.

Combining the preceding equations, we ®nd

lim
z0!�1

T � T�1 � cD � edt;

where

cD � 1

2Ac

Z
D

/�x�nz�x�dS�x� �41�

is the displacement constant expressed as a surface in-

tegral of the density of the double-layer potential

weighted by the z-component of the normal vector over

one period of the surface.

Taking the limit as the point x0 approaches D, ex-

pressing the double-layer integral in terms of its princi-

pal value, and using the boundary condition (38), we

obtain an integral equation of the second kind for /

/�x0� � ÿ2

Z PV

D
/�x� n�x� � rG3D±2P�x; x0�dS�x�

� 2 T�1�x0�� ÿ T0��; �42�
where PV denotes the principal value. Having solved the

integral equation, we may compute cD using the integral

representation (41).

To compute the surface ¯ux, we require the normal

derivative of T. This can be found by expressing the

gradient of T D in terms of the curl of a disturbance

vector potential AD as

uD�x0� � rT D�x0� � r � AD�x0�; �43�
e.g., Pozrikidis [10]. The disturbance vector potential is

given by the integral representation

AD�x0� �
Z

D
G3D±2P�x; x0�f�x�dS�x�; �44�

where f is the strength of the equivalent vortex sheet

given by

f � n�r/ �45�
involving tangential derivatives of /. The method in-

volves computing f from (45), computing AD from (44),

and then evaluating the normal component of the curl

on the right-hand side of (43).

4.2. Second problem

To formulate the second problem, we express the

temperature ®elds in the two media (T1; T2) in terms of a

double layer potential in the form

T1�x0� � cz�
Z

D
/�x� n�x� � rG3D±2P�x; x0�dS�x�;

T2�x0� � k cz
�
�
Z

D
/�x� n�x� � rG3D±2P�x; x0�dS�x�

�
:

�46�

The properties of the double-layer potential ensure

that these representations satisfy the ¯ux-continuity

condition across the interface required by the second of

conditions (11).

Taking the limit as the point x0 approaches D from

above or below, we obtain, respectively,
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T��x0��cz�1

2
/�x0��

Z PV

D
/�x�n�x��rG3D±2P�x;x0�dS�x�;

Tÿ�x0��k cz
�
ÿ1

2
/�x0��

Z PV

D
/�x�n�x��rG3D±2P�x;x0�dS�x�

�
:

�47�
Requiring continuity of temperature across the in-

terface, we obtain the following integral equation of the

second kind for /

/�x0�

� ÿ2
1ÿ k
1� k

cz
�
�
Z PV

/�x�rG3D±2P�x;x0� � n�x�dS�x�
�
:

�48�
As k! 0, the ratio �1ÿ k�=�1� k� tends to unity,

and (48) reduces to the integral equation (42). As

k!1, the ratio tends to negative unity, and (48) re-

duces to the counterpart of the integral Eq. (42) for the

lower half-space. To evaluate the macroscopic discon-

tinuity of the temperature across the interface, we work

as in the ®rst problem, and ®nd

DT � �1� k�
2A

Z
D

/�x�nz�x�dS; �49�

which is the generalized counterpart of (35).

4.3. Numerical method

To solve the integral equations, we discretize one

period of the surface D into a collection of curved tri-

angles de®ned by six nodes, as discussed by Pozrikidis

[11]. Triangulation is implemented by successively sub-

dividing an eight-element pattern into a descendent

pattern that arises by subdividing each triangle into four

descendant triangles. The normal vector and all other

variables that undergo a discontinuity across the triangle

edges are averaged at the nodes over the host triangles

for improved accuracy. All geometrical variables and the

unknown functions are approximated with quadratic

functions over each triangle with respect to the local

triangle coordinates.

The integral equations (42) and (48) are solved by the

method of successive substitutions, which involves as-

suming a form for /, and then recomputing it from the

right-hand sides of (42) or (48). It can be shown that the

spectral radius of the integral operator on the right-hand

side of (42) or (48) is less than unity, and the successive

substitutions converge for any surface geometry.

The principal value of the double-layer potential is

desingularized with the help of the integral identityZ PV

D
n�x� � rG3D±2P�x; x0�dS�x� � 0; �50�

which allows us to write

Z PV

D
/�x� n�x� �rG3D±2P�x;x0�dS�x�

�
Z PV

D
/�x�� ÿ/�x0�� n�x� �rG3D±2P�x;x0�dS�x�: �51�

The integral on the right-hand sight of (51) is com-

puted using a seven-point quadrature over each element

with respect to the local barycentric triangle coordinates.

Most of the computations reported in the next section

were carried out using 512 triangles over a period cor-

responding to 1028 nodes. The results were con®rmed to

be accurate to at least the third signi®cant ®gure. Each

computation required approximately 30 min of CPU

time on a Pentium III 600 MHz running LINUX. The

vast majority of the computation time is expended for

evaluating the doubly-periodic Green's function.

5. Results

We have evaluated the asymptotic solutions dis-

cussed in Sections 2 and 3, and obtained numerical so-

lutions using the boundary element method discussed in

Section 4, for surfaces and interfaces hosting doubly-

periodic sinusoidal corrugations with square or hexag-

onal pattern. In the case of the square lattice with side

length L, the height of the corrugations is given by

H�x0� � �L cos
2p
L

x
� ��

� cos
2p
L

y
� ��

; �52�

where � is the dimensionless amplitude. The vertical

distance from a trough to a crest is equal to 4�L. In the

case of the hexagonal lattice with base vectors

a1 � L�1; 0� and a2 � L�0:5; ���
3
p

=2�, the height of the

corrugations is given by

H�x0� � �L cos
4py���

3
p

L

� ��
� cos

2px
L

�
ÿ 2py���

3
p

L

��
�53�

and the vertical distance from a trough to a crest is also

equal to 4�L.

First, we consider the problem of heat transport from

an isothermal wavy surface. In Fig. 2(a) and (b), we

show graphs of the dimensionless displacement constant

ĉD � ÿcD=L plotted against the amplitude of the cor-

rugations �, respectively, for the square and hexagonal

pattern. The solid curves represent the asymptotic ex-

pression for small amplitudes given in Eq. (24), and the

symbols represent numerical results obtained by the

boundary element method. The dimensionless displace-

ment constant ĉD predicted by the perturbation analysis

is

ĉD � 2p�2 and ĉD � 4p���
3
p �2 �54�
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for the square lattice and the hexagonal lattices, re-

spectively. For small values of �, up to 0.1, the agree-

ment between the asymptotic and numerical results is

good, the latter con®rming the parabolic behavior near

the origin. For higher values of �, the second-order

asymptotic theory over-predicts the displacement con-

stant by a substantial amount. The numerical results

show that for � > 0:15, cD increases linearly with � at a

rate that depends weakly on the lattice geometry, and is

approximately equal to 2=3.

For large amplitudes �, the temperature distribution

near the crests resembles that around a doubly-periodic

array of vertical protrusions. Deep down between the

protrusions, the temperature tends to become equal to

the wall temperature T0. In the limit of very large am-

plitude, the protrusions reduce to slender needles.

In Figs. 3 and 4, we present gray-scale graphs of the

¯ux distribution over the surface of the square lattice,

and in Figs. 5 and 6, we present corresponding graphs

for the hexagonal lattice, for a small and a large am-

plitude � � 0:01 and 0.3. These results were obtained

using the boundary element method. Note that the

vertical scale has been compressed to allow for better

visibility. For small amplitudes (� � 0:01), correspond-

ing to Figs. 3 and 5, the ¯ux is enhanced at the crests and

reduced at the troughs so that its surface integral is

constant and equal to cA. Comparisons have shown

excellent agreement with the predictions of the asymp-

totic theory. For high amplitudes (� � 0:3) correspond-

ing to Figs. 4 and 6, the ¯ux distribution appears more

intricate. Although maximum heat ¯ux still occurs at the

crests, local peaks arise in the intervening space associ-

ated with second and higher-order harmonics. A high-

order perturbation expansion is necessary to capture the

®ne features of the distribution using asymptotic

methods.

Fig. 3. Flux distribution over the square lattice with small amplitude � � 0:01. Panel (a) shows the surface shaded in gray-scale ac-

cording to the ¯ux; dark color corresponds to high heat-¯ux, and light color corresponds to low heat-¯ux. Note that the vertical scale

has been compressed for visibility. Panel (b) is a ``topographical map'' of the density-¯ux.

Fig. 2. Displacement constant cD for (a) the square, and (b) hexagonal lattice. The solid curves represent the prediction of the second-

order perturbation expansion given in Eq. (19); the solid circles represent the results of the numerical solution based on the boundary

element method.
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Next, we turn our attention to the second problem of

heat transport across a wavy interface. For a wall ge-

ometry that is isotropic in the z-direction normal to the

unperturbed interface, only values of k in the range (0,1)

need to be considered; the solution for k > 1 arises from

that for 1=k by switching the direction of the z-axis, and

setting DT �k� � DT �1=k�. In Figs. 7 and 8, we present

graphs of the dimensionless macroscopic jump in tem-

perature cDT � ÿDT=�cL� as a function of the conduc-

tivity ratio k, respectively, for the square and hexagonal

lattice. The solid curves represent the small amplitude

expression for DT given by Eq. (35), and the solid circles

represent the numerical results. The asymptotic analysis

predicts, respectively,

cDT � 2p�2 �1ÿ k�2
�1� k� and

cDT � 4p�2 �1ÿ k�2���
3
p �1� k� : �55�

For small values of �, corresponding to Figs. 7(a) and

8(a), the agreement between the asymptotic and nu-

merical results is exceptional. For larger values of �,
(Figs. 7(b) and 8(b)), the relative error appears to be

independent of k at a given amplitude. When k � 0, the

dimensionless temperature discontinuity reaches a

maximum that is equal to the dimensionless displace-

ment constant ĉD obtained in the ®rst problem Eq. (54).

Fig. 4. Similar to Fig. 3 but for a square lattice with amplitude � � 0:3.

Fig. 5. Similar to Fig. 3 but for a hexagonal lattice with amplitude � � 0:01.
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Fig. 6. Similar to Fig. 3 but for a hexagonal lattice with amplitude � � 0:3.

Fig. 7. Dimensionless jump in temperature DT̂ plotted against the conductivity ratio k for square corrugations of amplitude (a)

� � 0:01 and (b) 0.1.

Fig. 8. Dimensionless jump in temperature DT̂ plotted against the conductivity ratio k for hexagonal corrugations of amplitude (a)

� � 0:01 and (b) 0.1.

M.M. Fyrillas, C. Pozrikidis / International Journal of Heat and Mass Transfer 44 (2001) 1789±1801 1799



When k � 1, i.e., the conductivities of the materials are

equal, the temperature ®eld is continuous and DT � 0.

6. Discussion

We have addressed two related problems concerning

heat transport across irregular surfaces and interfaces

between two conducting media. In each case, we evalu-

ated the displacement constant corresponding to the

linear ®eld prevailing far from the surface or interface.

The theory accounts for surfaces and interfaces of ar-

bitrary geometry and direction of periodicity. The

asymptotic expansion is practically limited to surfaces

with sinusoidal corrugations, but the integral formula-

tion is able to handle any arbitrary geometries including

surfaces with rectangular projections or depressions

modeling, for example, microchips placed on boards in

microelectronics.

To show the practical application of the results, we

consider heat transport across the rough surface of a

sphere of radius a representing the surface of a porous

particle, held at the constant temperature T0. Using the

®rst of Eq. (54), we ®nd that the surface ¯ux is given by

q � ÿj
T1 ÿ T0 � 2p�2Lc

a
; �56�

where T1 is the temperature far from the sphere, � is a

measure of the surface roughness, and c � ÿoT=or

evaluated at r � a. Substituting c � ÿq=j and re-

arranging, we ®nd

q � ÿ j
1ÿ 2p�2L=a

T1 ÿ T0

a
; �57�

where L=a is the ratio between the length scale of the

corrugations and the radius of the sphere. The factor

1=�1ÿ 2p�2L=a� expresses the enhancement in ¯ux due

to surface roughness.

As a second application, we consider heat transport

across the rough interface between two slabs, located at

y � a; the upper slab with conductivity j1 extends be-

tween y � a and y � b, and the lower slab with con-

ductivity j2 extends between y � 0 and y � a, as shown

in Fig. 9. Using the ®rst of Eq. (55) we ®nd that the

macroscopic discontinuity across the interface is given

by

DT � T1�y � a� ÿ T2�y � a� � ÿ2p�2 �1ÿ k�2
1� k

cL; �58�

where k � j1=j2, c � ÿoT=oy at y � a evaluated on the

side of the upper slab, and T1 and T2 are the macroscopic

linear pro®les. Setting q � ÿj1 TU ÿ T1�y � a�� �=�bÿ a�
� ÿj2 T2�y � a� ÿ TL� �=a, substituting c � ÿq=j1, and

assuming for illustration that b � 2a, we ®nd

q � ÿ j1j2

j1 � j2

1

1ÿ ��2p�2�1ÿ k�2L�=��1� k�2a��
� TU ÿ TL

a
: �59�

The second fraction on the right-hand side expresses

the enhancement in transport due to the irregularities.

Our results con®rm that the enhancement in the rate

of transport across a rough surface does not scale with

the surface area, but rather with a power of the ampli-

tude of the irregularities. Furthermore, as the amplitude

of the irregularities is raised, the enhancement coe�cient

tends to a ®nite asymptotic value. Several authors have

studied transport across two-dimensional fractal

boundaries with in®nite surface area [5,6,12] and found

that the rate of transport is insensitive to the presence of

small scale irregularities beyond a certain level.

Although analogous studies for three-dimensional ge-

ometries have not been presented, the fast decay of the

temperature ®eld within depressions and enclosures is

certain to diminish the signi®cance of small scales em-

bedded on larger irregularities.

A large body of experimental data exists on thermal

contact conductance, as discussed in the references cited

in the introduction. Unfortunately, we were not able to

identify analogous data for transport across a non-

planar isothermal surface or an interface between two

conformal media, neither we were able to devise a

meaningful way of comparing our results with those on

Fig. 9. Conductive heat transport across the rough interface of

two slabs with di�erent conductivities. The nominal position of

the macroscopically ¯at interface is located at y � a; the upper

slab with conductivity j1 extends between y � a and y � b, and

the lower slab with conductivity j2 extends between y � 0 and

y � a. At the macroscopic level, the temperature ®eld is dis-

continuous across the interface, as shown in the ®gure.

1800 M.M. Fyrillas, C. Pozrikidis / International Journal of Heat and Mass Transfer 44 (2001) 1789±1801



thermal contact conductance. Comparison of our pre-

dictions with laboratory data suggests itself as a topic

for further research.
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